Главная » Легкоатлетическое оборудование » Фитнес оборудование BODY-SOLID |
Отзывы о продукте Утяжелители 2х4,5 кг регулируемые BSTAW20 
kra at
StephenPlalk
(09.04.2025 06:46:35)
Broken spheres
Dyson died in 2020 before any of his spheres could be found — although they are just one of a dozen ideas that bear his name.
<a href=https://kra30att.cc>kra31at</a>
“As a young scientist, Dyson showed that three competing quantum theories were actually the same theory — he summarily ended the competition,” said William Press, the Leslie Surginer Professor of Computer Science and Integrative Biology at the University of Texas at Austin. He was not involved in the study. “Later, he applied his genius to areas of astronomy, cosmology, the extraterrestrial realm, and also the very real problem of nuclear proliferation here on planet Earth. At the time of his death, he was recognized as a provocative and creative thinker.”
George Dyson also attested to his father’s fascination and comprehensive reach across disciplines.
https://kra30att.cc
kra30at
“Taking advantage of a short attention span and an aversion to bureaucracy, he contributed to five fields of mathematics and eleven fields of physics, as well as to theoretical biology, engineering, operations research, literature, and public affairs,” the younger Dyson said. “Many of his ideas were controversial, with one of his guiding principles being that ‘It is better to be wrong than to be vague.’”
The approach of the researchers behind the new study could offer a more fruitful path in the search for extraterrestrial intelligence, said Tomotsugu Goto, an associate professor of astronomy at the National Tsing Hua University in Taiwan. He also was not involved with the study.
“However, contamination by circumstellar debris disks, which mimic Dyson Sphere infrared signatures, remains a concern,” he added in an email. “Authors argue that the debris disks around (dwarf stars) are rare, but the 7 candidate authors selected out of 5 million sources are also rare. Despite this, the seven candidates warrant further investigation with powerful telescopes for a more definitive evaluation.”
Dyson died in 2020 before any of his spheres could be found — although they are just one of a dozen ideas that bear his name.
<a href=https://kra30att.cc>kra31at</a>
“As a young scientist, Dyson showed that three competing quantum theories were actually the same theory — he summarily ended the competition,” said William Press, the Leslie Surginer Professor of Computer Science and Integrative Biology at the University of Texas at Austin. He was not involved in the study. “Later, he applied his genius to areas of astronomy, cosmology, the extraterrestrial realm, and also the very real problem of nuclear proliferation here on planet Earth. At the time of his death, he was recognized as a provocative and creative thinker.”
George Dyson also attested to his father’s fascination and comprehensive reach across disciplines.
https://kra30att.cc
kra30at
“Taking advantage of a short attention span and an aversion to bureaucracy, he contributed to five fields of mathematics and eleven fields of physics, as well as to theoretical biology, engineering, operations research, literature, and public affairs,” the younger Dyson said. “Many of his ideas were controversial, with one of his guiding principles being that ‘It is better to be wrong than to be vague.’”
The approach of the researchers behind the new study could offer a more fruitful path in the search for extraterrestrial intelligence, said Tomotsugu Goto, an associate professor of astronomy at the National Tsing Hua University in Taiwan. He also was not involved with the study.
“However, contamination by circumstellar debris disks, which mimic Dyson Sphere infrared signatures, remains a concern,” he added in an email. “Authors argue that the debris disks around (dwarf stars) are rare, but the 7 candidate authors selected out of 5 million sources are also rare. Despite this, the seven candidates warrant further investigation with powerful telescopes for a more definitive evaluation.”
kraken войти
WilliamDof
(09.04.2025 06:15:47)
‘Dyson spheres’ were theorized as a way to detect alien life. Scientists say they’ve found potential evidence
<a href=https://kra30c.cc>kraken ссылка</a>
What would be the ultimate solution to the energy problems of an advanced civilization? Renowned British American physicist Freeman Dyson theorized it would be a shell made up of mirrors or solar panels that completely surrounds a star — harnessing all the energy it produces.
“One should expect that, within a few thousand years of its entering the stage of industrial development, any intelligent species should be found occupying an artificial biosphere which completely surrounds its parent star,” wrote Dyson in a 1960 paper in which he first explained the concept
https://kra30c.cc
kraken сайт
If it sounds like science fiction, that’s because it is: Dyson took the idea from Olaf Stapledon’s 1937 novel “Star Maker,” and he was always open about that. The late scientist was a professor emeritus at the Institute of Advanced Study in Princeton, New Jersey.
Still, coming from a thinker who some in the scientific community say might have been worthy of a Nobel Prize early in his career, the concept took hold and the hypothetical megastructures became known as Dyson spheres, even though the physicist later clarified that they would actually consist of “a loose collection or swarm of objects traveling on independent orbits around the star.”
In his paper, Dyson also noted that Dyson spheres would give off waste heat detectable as infrared radiation, and suggested that looking for that byproduct would be a viable method for searching for extraterrestrial life. However, he added that infrared radiation by itself would not necessarily mean extraterrestrial intelligence, and that one of the strongest reasons for searching for such sources was that new types of natural astronomical objects might be discovered.
“Scientists (at the time) were largely receptive, not to the likelihood that alien civilisations would be found to exist, but that a search for waste heat would be a good place to look,” said George Dyson, a technology writer and author and the second of Dyson’s six children, via email. “Science fiction, from ‘Footfall’ to ‘Star Trek,’ took the idea and ran with it, while social critics adopted the Dyson sphere as a vehicle for questioning the wisdom of unlimited technological growth.”
<a href=https://kra30c.cc>kraken ссылка</a>
What would be the ultimate solution to the energy problems of an advanced civilization? Renowned British American physicist Freeman Dyson theorized it would be a shell made up of mirrors or solar panels that completely surrounds a star — harnessing all the energy it produces.
“One should expect that, within a few thousand years of its entering the stage of industrial development, any intelligent species should be found occupying an artificial biosphere which completely surrounds its parent star,” wrote Dyson in a 1960 paper in which he first explained the concept
https://kra30c.cc
kraken сайт
If it sounds like science fiction, that’s because it is: Dyson took the idea from Olaf Stapledon’s 1937 novel “Star Maker,” and he was always open about that. The late scientist was a professor emeritus at the Institute of Advanced Study in Princeton, New Jersey.
Still, coming from a thinker who some in the scientific community say might have been worthy of a Nobel Prize early in his career, the concept took hold and the hypothetical megastructures became known as Dyson spheres, even though the physicist later clarified that they would actually consist of “a loose collection or swarm of objects traveling on independent orbits around the star.”
In his paper, Dyson also noted that Dyson spheres would give off waste heat detectable as infrared radiation, and suggested that looking for that byproduct would be a viable method for searching for extraterrestrial life. However, he added that infrared radiation by itself would not necessarily mean extraterrestrial intelligence, and that one of the strongest reasons for searching for such sources was that new types of natural astronomical objects might be discovered.
“Scientists (at the time) were largely receptive, not to the likelihood that alien civilisations would be found to exist, but that a search for waste heat would be a good place to look,” said George Dyson, a technology writer and author and the second of Dyson’s six children, via email. “Science fiction, from ‘Footfall’ to ‘Star Trek,’ took the idea and ran with it, while social critics adopted the Dyson sphere as a vehicle for questioning the wisdom of unlimited technological growth.”
kraken зайти
Alonzohow
(08.04.2025 23:47:33)
Space, time: The continual question
If time moves differently on the peaks of mountains than the shores of the ocean, you can imagine that things get even more bizarre the farther away from Earth you travel.
<a href=https://kra30c.cc>kraken tor</a>
To add more complication: Time also passes slower the faster a person or spacecraft is moving, according to Einstein’s theory of special relativity.
Astronauts on the International Space Station, for example, are lucky, said Dr. Bijunath Patla, a theoretical physicist with the US National Institute of Standards and Technology, in a phone interview. Though the space station orbits about 200 miles (322 kilometers) above Earth’s surface, it also travels at high speeds — looping the planet 16 times per day — so the effects of relativity somewhat cancel each other out, Patla said. For that reason, astronauts on the orbiting laboratory can easily use Earth time to stay on schedule.
https://kra30c.cc
kraken тор
For other missions — it’s not so simple.
Fortunately, scientists already have decades of experience contending with the complexities.
Spacecraft, for example, are equipped with their own clocks called oscillators, Gramling said.
“They maintain their own time,” Gramling said. “And most of our operations for spacecraft — even spacecraft that are all the way out at Pluto, or the Kuiper Belt, like New Horizons — (rely on) ground stations that are back on Earth. So everything they’re doing has to correlate with UTC.”
But those spacecraft also rely on their own kept time, Gramling said. Vehicles exploring deep into the solar system, for example, have to know — based on their own time scale — when they are approaching a planet in case the spacecraft needs to use that planetary body for navigational purposes, she added.
For 50 years, scientists have also been able to observe atomic clocks that are tucked aboard GPS satellites, which orbit Earth about 12,550 miles (20,200 kilometers) away — or about one-nineteenth the distance between our planet and the moon.
Studying those clocks has given scientists a great starting point to begin extrapolating further as they set out to establish a new time scale for the moon, Patla said.
“We can easily compare (GPS) clocks to clocks on the ground,” Patla said, adding that scientists have found a way to gently slow GPS clocks down, making them tick more in-line with Earth-bound clocks. “Obviously, it’s not as easy as it sounds, but it’s easier than making a mess.”
If time moves differently on the peaks of mountains than the shores of the ocean, you can imagine that things get even more bizarre the farther away from Earth you travel.
<a href=https://kra30c.cc>kraken tor</a>
To add more complication: Time also passes slower the faster a person or spacecraft is moving, according to Einstein’s theory of special relativity.
Astronauts on the International Space Station, for example, are lucky, said Dr. Bijunath Patla, a theoretical physicist with the US National Institute of Standards and Technology, in a phone interview. Though the space station orbits about 200 miles (322 kilometers) above Earth’s surface, it also travels at high speeds — looping the planet 16 times per day — so the effects of relativity somewhat cancel each other out, Patla said. For that reason, astronauts on the orbiting laboratory can easily use Earth time to stay on schedule.
https://kra30c.cc
kraken тор
For other missions — it’s not so simple.
Fortunately, scientists already have decades of experience contending with the complexities.
Spacecraft, for example, are equipped with their own clocks called oscillators, Gramling said.
“They maintain their own time,” Gramling said. “And most of our operations for spacecraft — even spacecraft that are all the way out at Pluto, or the Kuiper Belt, like New Horizons — (rely on) ground stations that are back on Earth. So everything they’re doing has to correlate with UTC.”
But those spacecraft also rely on their own kept time, Gramling said. Vehicles exploring deep into the solar system, for example, have to know — based on their own time scale — when they are approaching a planet in case the spacecraft needs to use that planetary body for navigational purposes, she added.
For 50 years, scientists have also been able to observe atomic clocks that are tucked aboard GPS satellites, which orbit Earth about 12,550 miles (20,200 kilometers) away — or about one-nineteenth the distance between our planet and the moon.
Studying those clocks has given scientists a great starting point to begin extrapolating further as they set out to establish a new time scale for the moon, Patla said.
“We can easily compare (GPS) clocks to clocks on the ground,” Patla said, adding that scientists have found a way to gently slow GPS clocks down, making them tick more in-line with Earth-bound clocks. “Obviously, it’s not as easy as it sounds, but it’s easier than making a mess.”
XymRet
(08.04.2025 23:32:21)
<a href=http://telephonebuyapl.com> Cheap iPhone X Buy iPhone Apple</a>
iPhone 14 Pro 512GB - Deep Purle $ 600.00 IPhone 15 Pro 512GB - Gold $ 600.00 iPhone 13 Pro Max 550$ iPhone SE 2020 300$ iPhone 12 Pro Max 400$ iPhone 12 Pro 350$ iPhone 11 Pro Max 512GB Silver 250.00$ iPhone 11 Pro Max 512GB Midnight Green 250.00$ Stainless Steel Case, White Sport Band, 140 — 210mm wrists 250.00$ Gold Stainless Steel, Stone Sport Band, 130 — 200mm wrists 200.00$ Gold Stainless Steel, Stone Sport Band, 140 — 210mm wrists 250.00$ Black Stainless Steel, Black Sport Band, 130 — 200mm wrists 200.00$ Black Stainless Steel, Black Sport Band, 140 — 210mm wrists 250.00$ Apple Watch Gold, Pink Sand Sport Loop, 140 — 210mm wrists 120.00$
<a href=http://telephonebuysale.link>http://telephonebuysale.link</a>
iPhone 14 Pro 512GB - Deep Purle $ 600.00 IPhone 15 Pro 512GB - Gold $ 600.00 iPhone 13 Pro Max 550$ iPhone SE 2020 300$ iPhone 12 Pro Max 400$ iPhone 12 Pro 350$ iPhone 11 Pro Max 512GB Silver 250.00$ iPhone 11 Pro Max 512GB Midnight Green 250.00$ Stainless Steel Case, White Sport Band, 140 — 210mm wrists 250.00$ Gold Stainless Steel, Stone Sport Band, 130 — 200mm wrists 200.00$ Gold Stainless Steel, Stone Sport Band, 140 — 210mm wrists 250.00$ Black Stainless Steel, Black Sport Band, 130 — 200mm wrists 200.00$ Black Stainless Steel, Black Sport Band, 140 — 210mm wrists 250.00$ Apple Watch Gold, Pink Sand Sport Loop, 140 — 210mm wrists 120.00$
<a href=http://telephonebuysale.link>http://telephonebuysale.link</a>
Этюдник оглашений Договоримся
Josephstest
(08.04.2025 21:54:33)
https://uralmetal.ru/metalloprokat/katalog/list_nerzh_gk_2h1000h2000_2_12h18n10t
.html - лист нержавеющий aisi 304
.html - лист нержавеющий aisi 304
seo web aid online www
Jamessow
(08.04.2025 21:53:52)
https://uralmetal.ru/metalloprokat/nerzhaveushiy/listovoy-prokat-listy.html - лист нержавеющий х к
Кракен тор
Frankcob
(08.04.2025 21:51:38)
Lunar clockwork
What scientists know for certain is that they need to get precision timekeeping instruments to the moon.
<a href=https://kra30c.cc>kraken сайт</a>
Exactly who pays for lunar clocks, which type of clocks will go, and where they’ll be positioned are all questions that remain up in the air, Gramling said.
“We have to work all of this out,” she said. “I don’t think we know yet. I think it will be an amalgamation of several different things.”
https://kra30c.cc
kra cc
Atomic clocks, Gramling noted, are great for long-term stability, and crystal oscillators have an advantage for short-term stability.
“You never trust one clock,” Gramling added. “And you never trust two clocks.”
Clocks of various types could be placed inside satellites that orbit the moon or perhaps at the precise locations on the lunar surface that astronauts will one day visit.
As for price, an atomic clock worthy of space travel could cost around a few million dollars, according Gramling, with crystal oscillators coming in substantially cheaper.
But, Patla said, you get what you pay for.
“The very cheap oscillators may be off by milliseconds or even 10s of milliseconds,” he added. “And that is important because for navigation purposes — we need to have the clocks synchronized to 10s of nanoseconds.”
A network of clocks on the moon could work in concert to inform the new lunar time scale, just as atomic clocks do for UTC on Earth.
(There will not, Gramling added, be different time zones on the moon. “There have been conversations about creating different zones, with the answer: ‘No,’” she said. “But that could change in the future.”)
What scientists know for certain is that they need to get precision timekeeping instruments to the moon.
<a href=https://kra30c.cc>kraken сайт</a>
Exactly who pays for lunar clocks, which type of clocks will go, and where they’ll be positioned are all questions that remain up in the air, Gramling said.
“We have to work all of this out,” she said. “I don’t think we know yet. I think it will be an amalgamation of several different things.”
https://kra30c.cc
kra cc
Atomic clocks, Gramling noted, are great for long-term stability, and crystal oscillators have an advantage for short-term stability.
“You never trust one clock,” Gramling added. “And you never trust two clocks.”
Clocks of various types could be placed inside satellites that orbit the moon or perhaps at the precise locations on the lunar surface that astronauts will one day visit.
As for price, an atomic clock worthy of space travel could cost around a few million dollars, according Gramling, with crystal oscillators coming in substantially cheaper.
But, Patla said, you get what you pay for.
“The very cheap oscillators may be off by milliseconds or even 10s of milliseconds,” he added. “And that is important because for navigation purposes — we need to have the clocks synchronized to 10s of nanoseconds.”
A network of clocks on the moon could work in concert to inform the new lunar time scale, just as atomic clocks do for UTC on Earth.
(There will not, Gramling added, be different time zones on the moon. “There have been conversations about creating different zones, with the answer: ‘No,’” she said. “But that could change in the future.”)
кракен даркнет
OctavioEcono
(08.04.2025 20:49:35)
‘A whole different mindset’
Accurate clockwork is one matter. But how future astronauts living and working on the lunar surface will experience time is a different question entirely.
<a href=https://kra30c.cc>кракен вход</a>
On Earth, our sense of one day is governed by the fact that the planet completes one rotation every 24 hours, giving most locations a consistent cycle of daylight and darkened nights. On the moon, however, the equator receives roughly 14 days of sunlight followed by 14 days of darkness.
“It’s just a very, very different concept” on the moon, Betts said. “And (NASA is) talking about landing astronauts in the very interesting south polar region (of the moon), where you have permanently lit and permanently shadowed areas. So, that’s a whole other set of confusion.”
https://kra30c.cc
kra31cc
“It’ll be challenging” for those astronauts, Betts added. “It’s so different than Earth, and it’s just a whole different mindset.”
That will be true no matter what time is displayed on the astronauts’ watches.
Still, precision timekeeping matters — not just for the sake of scientifically understanding the passage of time on the moon but also for setting up all the infrastructure necessary to carry out missions.
The beauty of creating a time scale from scratch, Gramling said, is that scientists can take everything they have learned about timekeeping on Earth and apply it to a new system on the moon.
And if scientists can get it right on the moon, she added, they can get it right later down the road if NASA fulfills its goal of sending astronauts deeper into the solar system.
“We are very much looking at executing this on the moon, learning what we can learn,” Gramling said, “so that we are prepared to do the same thing on Mars or other future bodies.”
Accurate clockwork is one matter. But how future astronauts living and working on the lunar surface will experience time is a different question entirely.
<a href=https://kra30c.cc>кракен вход</a>
On Earth, our sense of one day is governed by the fact that the planet completes one rotation every 24 hours, giving most locations a consistent cycle of daylight and darkened nights. On the moon, however, the equator receives roughly 14 days of sunlight followed by 14 days of darkness.
“It’s just a very, very different concept” on the moon, Betts said. “And (NASA is) talking about landing astronauts in the very interesting south polar region (of the moon), where you have permanently lit and permanently shadowed areas. So, that’s a whole other set of confusion.”
https://kra30c.cc
kra31cc
“It’ll be challenging” for those astronauts, Betts added. “It’s so different than Earth, and it’s just a whole different mindset.”
That will be true no matter what time is displayed on the astronauts’ watches.
Still, precision timekeeping matters — not just for the sake of scientifically understanding the passage of time on the moon but also for setting up all the infrastructure necessary to carry out missions.
The beauty of creating a time scale from scratch, Gramling said, is that scientists can take everything they have learned about timekeeping on Earth and apply it to a new system on the moon.
And if scientists can get it right on the moon, she added, they can get it right later down the road if NASA fulfills its goal of sending astronauts deeper into the solar system.
“We are very much looking at executing this on the moon, learning what we can learn,” Gramling said, “so that we are prepared to do the same thing on Mars or other future bodies.”
BelnRet
(08.04.2025 20:23:08)
<a href=http://telephonecheapbuy.link>http://telephonecheapbuy.link</a>
IPhone 14 Pro Max 512GB - Gold iPhone Apple $ 650.00 iPhone 14 Pro Max 512GB - Silver iPhone Apple $ 650.00 iPhone 14 Pro Max 512GB - Space BlackiPhone 13 420$ iPhone 13 mini 400$ iPhone 13 Pro 500$ tainless Steel Case, Milanese Loop, 130 — 180mm wrists 250.00$ Stainless Steel Case, Milanese Loop, 150 — 200mm wrists 300.00$ Gold Stainless Steel, Milanese Loop, 130 — 180mm wrists 250.00$ Gold Stainless Steel, Milanese Loop, 150 — 200mm wrists 300.00$ Black Stainless Steel, Milanese Loop, 130 — 180mm wrists 250.00$ Black Stainless Steel, Milanese Loop, 150 — 200mm wrists 300.00$ MacBook Pro 15-inch, 2.7GHz, 512GB, Space Gray 1050.00$
<a href=http://telephonecheapbuy.link> Cheap iPhone SE 2020 Cheap iPhone XS Max</a>
кракен ссылка
VirgilPof
(08.04.2025 19:47:34)
Space, time: The continual question
If time moves differently on the peaks of mountains than the shores of the ocean, you can imagine that things get even more bizarre the farther away from Earth you travel.
<a href=https://kra30c.cc>kra31 cc</a>
To add more complication: Time also passes slower the faster a person or spacecraft is moving, according to Einstein’s theory of special relativity.
Astronauts on the International Space Station, for example, are lucky, said Dr. Bijunath Patla, a theoretical physicist with the US National Institute of Standards and Technology, in a phone interview. Though the space station orbits about 200 miles (322 kilometers) above Earth’s surface, it also travels at high speeds — looping the planet 16 times per day — so the effects of relativity somewhat cancel each other out, Patla said. For that reason, astronauts on the orbiting laboratory can easily use Earth time to stay on schedule.
https://kra30c.cc
kraken darknet
For other missions — it’s not so simple.
Fortunately, scientists already have decades of experience contending with the complexities.
Spacecraft, for example, are equipped with their own clocks called oscillators, Gramling said.
“They maintain their own time,” Gramling said. “And most of our operations for spacecraft — even spacecraft that are all the way out at Pluto, or the Kuiper Belt, like New Horizons — (rely on) ground stations that are back on Earth. So everything they’re doing has to correlate with UTC.”
But those spacecraft also rely on their own kept time, Gramling said. Vehicles exploring deep into the solar system, for example, have to know — based on their own time scale — when they are approaching a planet in case the spacecraft needs to use that planetary body for navigational purposes, she added.
For 50 years, scientists have also been able to observe atomic clocks that are tucked aboard GPS satellites, which orbit Earth about 12,550 miles (20,200 kilometers) away — or about one-nineteenth the distance between our planet and the moon.
Studying those clocks has given scientists a great starting point to begin extrapolating further as they set out to establish a new time scale for the moon, Patla said.
“We can easily compare (GPS) clocks to clocks on the ground,” Patla said, adding that scientists have found a way to gently slow GPS clocks down, making them tick more in-line with Earth-bound clocks. “Obviously, it’s not as easy as it sounds, but it’s easier than making a mess.”
If time moves differently on the peaks of mountains than the shores of the ocean, you can imagine that things get even more bizarre the farther away from Earth you travel.
<a href=https://kra30c.cc>kra31 cc</a>
To add more complication: Time also passes slower the faster a person or spacecraft is moving, according to Einstein’s theory of special relativity.
Astronauts on the International Space Station, for example, are lucky, said Dr. Bijunath Patla, a theoretical physicist with the US National Institute of Standards and Technology, in a phone interview. Though the space station orbits about 200 miles (322 kilometers) above Earth’s surface, it also travels at high speeds — looping the planet 16 times per day — so the effects of relativity somewhat cancel each other out, Patla said. For that reason, astronauts on the orbiting laboratory can easily use Earth time to stay on schedule.
https://kra30c.cc
kraken darknet
For other missions — it’s not so simple.
Fortunately, scientists already have decades of experience contending with the complexities.
Spacecraft, for example, are equipped with their own clocks called oscillators, Gramling said.
“They maintain their own time,” Gramling said. “And most of our operations for spacecraft — even spacecraft that are all the way out at Pluto, or the Kuiper Belt, like New Horizons — (rely on) ground stations that are back on Earth. So everything they’re doing has to correlate with UTC.”
But those spacecraft also rely on their own kept time, Gramling said. Vehicles exploring deep into the solar system, for example, have to know — based on their own time scale — when they are approaching a planet in case the spacecraft needs to use that planetary body for navigational purposes, she added.
For 50 years, scientists have also been able to observe atomic clocks that are tucked aboard GPS satellites, which orbit Earth about 12,550 miles (20,200 kilometers) away — or about one-nineteenth the distance between our planet and the moon.
Studying those clocks has given scientists a great starting point to begin extrapolating further as they set out to establish a new time scale for the moon, Patla said.
“We can easily compare (GPS) clocks to clocks on the ground,” Patla said, adding that scientists have found a way to gently slow GPS clocks down, making them tick more in-line with Earth-bound clocks. “Obviously, it’s not as easy as it sounds, but it’s easier than making a mess.”